Energy optimization of bioethanol production via gasification of switchgrass

نویسندگان

  • Mariano Martin
  • Ignacio E. Grossmann
  • Mariano Martín
چکیده

In this paper, we address the conceptual design of the bioethanol process from switchgrass via gasification. A superstructure is postulated for optimizing energy use that embeds direct or indirect gasification, followed by steam reforming or partial oxidation. Next, the gas composition is adjusted with membrane-PSA or water gas shift. Membrane separation, absorption with ethanol-amines and PSA are considered for the removal of sour gases. Finally, two synthetic paths are considered, high alcohols catalytic process with two possible distillation sequences, and syngas fermentation with distillation, corn grits, molecular sieves and pervaporation as alternative deshydration processes. The optimization of the superstructure is formulated as an MINLP problem using short-cut models, and solved through a special decomposition scheme that is followed by heat integration. The optimal process consists of direct gasification followed by steam reforming, removal of the excess of hydrogen and catalytic synthesis, yielding a potential operating cost of $0.41/gal

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Switchgrass-based Bioethanol Supply Chain Network Design Model under Auto-Regressive Moving Average Demand

Switchgrass is known as one of the best second-generation lignocellulosic biomasses for bioethanol production. Designing efficient switchgrass-based bioethanol supply chain (SBSC) is an essential requirement for commercializing the bioethanol production from switchgrass. This paper presents a mixed integer linear programming (MILP) model to design SBSC in which bioethanol demand is under auto-r...

متن کامل

Switchgrass for bioethanol and other value-added applications: a review.

Switchgrass is a promising feedstock for value-added applications due to its high productivity, potentially low requirements for agricultural inputs and positive environmental impacts. The objective of this paper is to review published research on the conversion of switchgrass into bioethanol and other value-added products. Environmental benefits associated with switchgrass include the potentia...

متن کامل

Energy Optimization of Bioethanol Production via Hydrolysis of Switchgrass

In this work, we propose the optimal flowsheet for the production of bioethanol from switchgrass, via hydrolysis. A superstructure embedding a number of alternatives is proposed. Two technologies are considered for switchgrass pretreatment, dilute acid and ammonia fibre explosion (AFEX) so that the structure of the grass is broken down. Next, enzymatic hydrolysis follows any of the pretreaments...

متن کامل

Process Optimization of FT-Diesel Production from Lignocellulosic Switchgrass

In this paper we present the conceptual design for the optimization of FT-diesel production process from switchgrass via gasification of biomass. We propose a limited superstructure where the process starts with the gasification of the biomass. Two different alternatives are evaluated, direct and indirect gasification. The gas obtained is cleaned up and its composition adjusted in terms of the ...

متن کامل

Energy and Water Optimization in Biofuel Plants

In this paper we address the topic of energy and water optimization in the production of bioethanol from corn and switchgrass. We show that in order for these manufacturing processes to be attractive, there is a need to go beyond traditional heat integration and water recycling techniques. Thus, we propose a strategy based on mathematical programming techniques to model and optimize the structu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000